Aquatic Toxicity Report

Laboratory: American Aquatic Testing, Inc. 890 North Graham Street Allentown, PA 18109

December 2012 TESTING SUMMARY:

TEST SPECIES	P. promelas	C.dubia
COMMON NAME	Fathead minnow	Water flea
TEST DATE	18 December, 2012	18 December, 2012
TEST ENDPOINT	LC_{50}	LC50
TEST RESULT	4049.9 mg/L	3268.5 mg/L
CONFIDENCE LIMITS	3389.8-4840.8	2816.8-3844.5
NOEL (No-Observed-Effect-Level)	2500 mg/L	2500 mg/L
TEST PARAMETERS	See Table I	See Table II

Client:

Delta Products Group

P.O. Box 6466

Aurora, IL 60598-0466

Contact:

Mark Ostermeier

(630) 357-5544

Laboratory:

American Aquatic Testing, Inc.

890 North Graham St. Allentown, PA 18109

Contact:

Christopher Nally

(610) 434 - 9015

CHEMICAL PRODUCT IDENTIFICATION

PRODUCT NAME:

Safe D Scale PLUS pH ADJUSTED

TESTING SUMMARY:

TEST SPECIES	P. promelas	C.dubia
COMMON NAME	Fathead minnow	Water flea
TEST DATE	18 December, 2012	18 December, 2012
TEST ENDPOINT	LC_{50}	LC50
TEST RESULT	4049.9 mg/L	3268.5 mg/L
CONFIDENCE LIMITS	3389.8-4840.8	2816.8-3844.5
NOEL (No-Observed-Effect-Level)	2500 mg/L	2500 mg/L
TEST PARAMETERS	See Table I	See Table II

REPORT CERTIFICATION

I certify under penalty of law that this report is an accurate and truthful representation of the toxicity testing which was performed by American Aquatic Testing, Inc., located at 890 North Graham St. Allentown, Pennsylvania. I further certify that I have personally examined and am familiar with the information submitted in this document and based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is complete as presented. I am aware that there are significant penalties for submitting false information.

Christopher J. Nally

President, Laboratory Director

TABLE I: Summary of Conditions for Pimephales promelas Toxicity Test [1]*

1.	Test type;	Static, daily renewal
2.	Temperature;	20.0 +/- 1.0 ° C
3.	Light quality;	Wide-spectrum fluorescent illumination
4.	Light intensity;	50 - 100 foot-candles
5.	Photoperiod;	16 hours light, 08 hours dark
6.	Test chamber size;	1000 mL glass beakers
7.	Test solution volume;	500 mL
8.	Renewal;	Daily
9	Age of test organisms;	8 days old
10.	Number organisms / replicate;	10
11.	Replicates;	02
12.	Feeding;	0.1 mL of <i>Artemia</i> nauplii two hours prior to 48 hour exchange
13.	Cleaning;	Siphon daily before solution renewal
14.	Aeration;	None unless dissolved oxygen concentrations ≤ 40 % saturation, then ~ 100 bubbles / min.
15.	Dilution water;	EPA Moderately hard water
16.	Test media concentrations;	0, 625,1250,2500,5000,10000 ppm
17.	Water quality;	Conductivity, dissolved oxygen, pH, temperature
18.	Test duration;	96 hours
19.	Effects measured;	LC ₅₀ and NOEL
20.	Test acceptability;	Minimum control survival 90 %

^{*} Test conducted according to AAT, Inc. Standard Operating Procedure (SOP) GENCHR001.1, with references to SOP's GENTOX001.1, GENTOX002.1, GENLAB002.0, GENCUL001.0

American Aquatic Testing, Inc. 890 N. Graham St. Allentown, PA

TABLE II: Summary of Conditions for C. dubia Toxicity Test [1]*

1.	Test type;	Static, daily renewal
2.	Temperature;	20.0 +/- 1.0 ° C
3.	Light quality;	Wide-spectrum fluorescent illumination
4.	Light intensity;	50 - 100 foot-candles
5.	Photoperiod;	16 hours light, 08 hours dark
6.	Test chamber size;	1000 mL
7.	Test solution volume;	80 mL
8.	Renewal;	Daily
9.	Age of test organisms;	< 1 day
10.	Number organisms / replicate;	10
11.	Replicates;	2
12.	Feeding;	YWT/algae solution prior to test initiation
13.	Cleaning;	None
14.	Aeration;	None unless dissolved oxygen concentrations ≤ 40 % saturation, then ~ 100 bubbles / min.
15.	Dilution water;	EPA Moderately hard water
16.	Test media concentrations;	0, 625,1250,2500,5000,10000 ppm
17.	Water quality;	Conductivity, dissolved oxygen, pH, temperature
18.	Test duration;	48 hours
19.	Effects measured;	LC ₅₀ and NOEL
20.	Test acceptability;	Minimum control survival 90 %

^{*} Test conducted according to AAT, Inc. Standard Operating Procedure (SOP) GENCHR001.1, with references to SOP's GENTOX001.1, GENTOX002.1, GENLAB002.0, GENCUL002.0

American Aquatic Testing, Inc. 890 N. Graham St. Allentown, PA

REFERENCES

[1] Weber, Cornelius I., et al. 1993 Methods for Measuring the Acute Toxicity of effluents and Receiving Waters to Freshwater and Marine Organisms, 4th Edition, EPA/600/4-90-027F, Environmental Monitoring Systems Laboratory, Office of Research and Development Cincinnati, Ohio 45268

APPENDIX A

RAW DATA - TOXICITY TESTING

Safe D Scale PLUS

Acute Test

American Aquatic Testing, Inc.

Job #:3_	11-01-01
	prometas
Hatch Date:	To Table

		,
Start Date & Time:	12-18-12	u,
End Date & Time:	12-18-12/	71.0
Dillion and the second	1000	

	Late: 19	110/12						-ind Dak	∍∝ ume:		20/12	700
								Dilution 1	Water:	EPA M	od, Ha	-d
	Concentration	Rep.		<u>. </u>	ive Cou	nt						
	- ppm	<u> </u>	O hr.	24 hr.	48 hr.	72 hr.	96 hr.	\	Appeara	ince & I	Behavio	The second
		Α	10	10	10	10	10	O hr.	24 hr.	48 hr.	72 hr.	96.hr.
-	Control	В.	10	10	10	10	10	 	· !	1	1	l
2 -	130	Α	10	10	10	10	10		 	1	1	1.1
ł	625	В	10	10	10	/8	10		 	1	1	1
	1500	Α	10	10	10	10	10			1.	,	1
	1920	В	10	lυ	10	10			 		1	. 1
		· A	10	10	10	10	10		 	/	1.	1
	2500	В	10	10	10	23	8		1	1	3	3
		Α	10	10	9	-4	23	'	1		_3	3
	5000	В	10	10	91	72	4/3		2	3	<u> </u>	2
	10000	<u>-A</u>	10:	28	02		7		2	3	<u>3</u>	2
		B·	10	19	0				<u>a</u>		_	_
	Initials		TRP	TAP	70	710	a	7700	2			
1	Date		12/18	12/19	n/s	12/2		7780	170	TAP	78P	100
٠.	Observation Key: 1-Norma	l, 2-Inactiv	o, 3—Irritated	. 4-Surfacine	S-Abromal	hadu ari	10/102	13/18	12/19	12/20	12/21	12/22

10 - Abnormal skin color. 7-Abnormal skin color. 7-Abnormal skin color. 7-Abnormal skin color. 7-Abnormal skin color.

Weight a	and Length Data
Length in Millimeters	Weight in Grams
	111
12	212
313	313
414	4
5	5 14
6	15
717	16
818	17
919	818
1020	19
20	1020
Initia	ls

Chamber Vo	lume (L):	_ Average Weight (g): Standard Dev.	
Length o	Load	ding Factor (g/L):	
	Mean Length (mm):	Length of Longest Fish (mm):Standard Deviation:	

Freshwater Acute Test

American Aquatic Testing, Inc.
Start Date & Time: Job#: 311-01-01 Species: P.promelas End Date & Time: 12-12-12 1700 Dilution Water: EPA Mod. Hard . Test Type: 96 kr. SDR

Concentration	Rep.	D	issolve	d Oxyge	en (mg/	L)		Tem	peratur	e (C)	
Ppm	<u> </u>	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.
0.1	A	8.4	8.5	7.9	8.6	8.0	20.0	20.5	20.5	20.0	201
Control	В	8.4	8.5	7.9	8.5	8.1	20.0	2015		20.0	20,0
12-	A	8.4	8.5	7.9	8.5	81	20.0	20,5	20.5	20.0	20,0
625	В	8.4	8.5	7.9	8.5	80	20,0	20.5	20.5	20.0	
1~ _	Α	8.4	8.5	7.9	8.6	8.7	30,0.	2015	20.5	20.0	20,0
1250	В	8.4	8.5	7.9	8.6	8,0	20.0	205	20.5	20.0	-
3 -	Α	8.4	8.5	7.9	8.5	8.0	30.00	20,5	20.5	20.0	20,0
2500	В	8.4	8.5	8.0	8.5	80	20.0	20.5	20.5	20.0	20,0
	Α	8.4	8.5	8.0	8.5	7.8	0,06	2015	20.5	20.0	20.0
5000	В	8.4	8.5	8.0	8.5	7.7	20,0	20,5	20.5		200
10000	Α	8.4	8.6	8.1 3			30.06	20,5	20.0 3		acio
,0000	В	8.4	8.6	8.2 3			20.0	20.5	200€		
Initials		TAP	TAP	TAP	TAP	P)	TAP	7/20	TAP	TAP	<i>a</i> /
Date	· · · · · · · · ·	12/18	12/19	12/20	12/21	12/22	12/18	12/19		12/2/	13/22

Concentration		рН	(std un	its)	Conductivity (umhos)					
- ppm	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.	0 hr.	24 hr.	48 hr.	72 hr.	96 hr.
Control	8.0	8.0	8.0	8,0	7.8	263	269	263	255	2/01
625	6.0	6.0	6.0	6.0	6.6	363	360	342	353	359
1920	8-50	6.0	6.7	6,1	6.5	552	529	516	521	530
2520	6.5	6.1	6,0	60	6.5,	864	277	875	856	860
5000	6.0	6.0	6.1	6,0	6.6	1497	1478	1493	1490	1400
[0000	6,0	61	6.9 @		-	2708				-
Initials	TAP	78b	TAP	7780	191	TAP	TRA	TAP	TAP	21
Date	13/18	12/19	12/20	12/21	18182	13/13	12/19	12/20		12/22

Concentration		Alka	linity (m		Hardness (mg/L)					
	0 hr.	24.br.	48 hr.	72 hr.	96 hr.	0 hr.	24-kr.	48 hr.	72 hr.	96 hr.
Control					· · · · · · · · · · · · · · · · · · ·				1	1 00 111.
100%		T		· · · · · ·					<u> </u>	
Initials							<u> </u>	<u></u>		<u> </u>
Date		†	 						 	

Concentration	Chlorine (mg/L)	Observations: 06.4-700 12/13
	Sample 1 Sample 2 Sample 3 Sample 4	
Control		(2)0012 1 002 400 1
100%		Officiality - TOP13/20
Initials		10/21 MORTALITY - 114-198
Date		
ACFWPAR WK3		<u></u>

Project Number:	311-01-01
Species: P	prometas & Cidshia

Beginning Date & Time: 12-18-12 1910 Ending Date & Time: 12/a2/i2 1700

Salinity and pH Adjustments American Aquatic Testing, Inc.

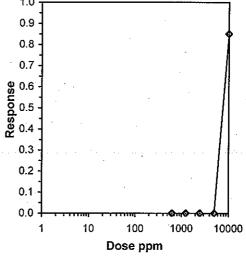
Sample Number	initial Salinity	Finat Salinity	Initial pH	Final pH	Adjusted pH	mis of acid		T
6×gom		<u> </u>	3.1	-	6-0			Date
1250 ppm	-	. –	2.6		6.4	0,70	TAP	12/18
2500 ppm		-	2.3			2.5	TAP	12/18
5000 pon			2,1		6.5	5.75	TRO	12/18
(25		_	1.7		6.0	12,2	TAP	12/18
525ppm					6.0	25.5	TRA	12/13
250pm		<u></u>	3.5		6.0	0.65	780	12/19
Suppm			2,7	-	6.0	2.3	100	
DOOD PDW			24		bet	5.25		12/19
O O da			2.0	, ,	6.0	12.1	7700	12/10
Oodoppm			1,7	_	6:1	25.25	TAP	12/19
25 ppm			3,4	-			TRO.	12/19
00000m			3.00		6.0	0.00	7RO	12/20
50000			2.3			2.5	TOP	12/20
SOUPPM	15	(A)	2.0		6.0	5.75	7AD	12/20
25gpm		· v	3.2		6.1	19.95	710	12/20
>2000 L		-	2.7		6.0	0.70	700	12/21
390nustions	<u> </u>	L			6,1	2.40	TRO	12/2,

Observations: 01/	V Sudium Hydraxide	- 02.7-TA	19/2	1 M2 1077
			/-3	

pecies:	P.pam	1-01-01 elas	•		Beginning Date & Time: 12-12-12-14/ Ending Date & Time: 12/22/12-1700						
	.·	58 A	llinity and Imerican A	i pH Adju quatic Testi	stments ing, Inc.			•			
Sample Number	Іліtіal Salinity	Final Salinity	Initial pH	Final pH	Adjusted pH	mis of acid					
)500 pp.			23		6.0	base add.		Date			
000 ppm		-	2.1		7	5.80	TAP	12/21			
					6.0	12.25	TOP	12/21			
				<u> </u>							
			· · · · · · · · · · · · · · · · · · ·								
					<u> </u>		-				
				ļ							
		·									
			<u>-</u>								
			·					. i			
1		د									
		- 100g - 100g									
								· .			
]	7							

the state of the s				
				_ · .
				·
	• •			
		*		
				
the state of the s		A SECTION OF SECTION ASSESSMENT	And a second of the second of	
			•	
		•		
	,			•
			• .	
-				
		·	· ·	
	*			
				
	· · · · · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·			•
	•			*
	······································			
·			•	
			····	
	•			

Acute Fish Test-24 Hr Survival										
Start Date:	12/18/2012		Test ID:	3110101Pp	Sample ID:	Delta				
End Date:	12/22/2012		Lab ID:	AAT, INC	Sample Type:	PREPARED				
Sample Date:			Protocol:	EPAA 91-EPA/600/4-90/027	FTest Species:	PP-Pimephales promelas				
Comments:	·									
Conc-ppm	1	2								
Control	1.0000	1.0000								
625	1.0000	1.000ò								
1250	1.0000	1.0000								
2500	1.0000	1.0000		•	•					
5000	1.0000	1.0000		•						
10000	0.2000	0.1000		· ·						


					Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean		Resp	Resp	Total	·····N· ····	Exact P	Critical	Resp	Number
Control	1.0000	1.0000		0	20	20	2			0	20
625	1.0000	1.0000		0	20	20	2	1.0000	0.0500	0	20
1250	1.0000	1.0000		0	20	20	2	1.0000	0.0500	0	20
2500	1.0000	1.0000	* .	0	20	20	- 2	1:0000	0.0500	0.	20
5000	1.0000	1.0000		0	20	20	2	1.0000	0.0500	0	20
*10000	0.1500	0.1500		17	3	20	2	0.0000	0.0500	17	20

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TH			
riypotitesis rest (1-tail, 0.00)	MOEC	LOEC		10			
Eigharla Exact Toot	5000	10000	7071.07		****		
Fisher's Exact Test	5000	10000	10/1.07			*	
T							

Treatments vs Control

Trimmed Spearman-Karber

Trim Level	EC50	95% CL	•		
0.0%					
5.0%					
10.0%				1.0	
20.0%	7517.03	6962.73 8115.46	•	201	
Auto-15.0%	7517.03	6962.73 8115.46		0.9	
				0.8 -	

Acute Fish Test-48 Hr Survival

Start Date: End Date:

12/18/2012

Test ID: 3110101Pp

Sample ID:

Delta

Sample Date:

12/22/2012

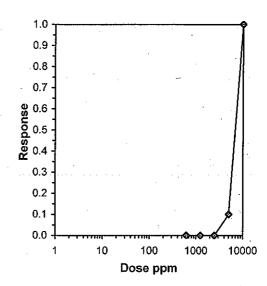
Lab ID: AAT, INC

Sample Type: Protocol: EPAA 91-EPA/600/4-90/027F Test Species:

PREPARED PP-Pimephales promelas

Comments:

Conc-ppm	1	2
Control	1.0000	1.0000
625	1.0000	1.0000
1250	1.0000	1.0000
2500	1.0000	1.0000
5000	0.9000	0.9000
10000	0.000	0.000


				Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
Control	1.0000	1.0000	0	20	20	2		·	0	·20
625	1.0000	1.0000	0	20	20	2	1.0000	0.0500	0	20
1250	1.0000	1.0000	0	20	20	2	1.0000	0.0500	0	20
2500	1.0000	1.0000	0	20	20	2	1.0000	0.0500	. 0	- 20
5000	0.9000	0.9000	2	18	20	2	0.2436	0.0500	2	20
10000	0.0000	0.0000	20	0	20	2			20	20

	DEC	ChV	
Fisher's Exact Test 5000 10	000	7071.07	

Treatments vs Control

Trimmed Spearman-Karber

Trim Level	EC50	95%	CL	
0.0%	6597.54	6011.66	7240.51	
5.0%	6745.97	6006.61	7576.34	
10.0%	6803.95	6424.37	7205.96	
20.0%	6803.95	6424.37	7205.96	
Auto-0.0%	6597 54	6011 66	7240 51	

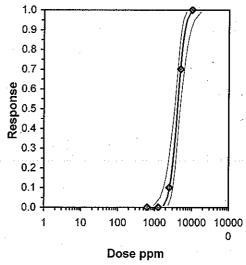
				Acute Fish	Test-72 Hr Survival		
Start Date:	12/18/2012	:	Test ID:	3110101Pp	Sample ID:	Delta	
End Date:	12/22/2012	:	Lab ID:	AAT, INC	Sample Type:	PREPARED	
Sample Date:			Protocol	: EPAA 91-EPA/600/	4-90/027F Test Species:	PP-Pimephales promelas	
Comments:					·	• •	
Conc-ppm	1	2					
Control	1.0000	1.0000			·		
625	1.0000	1.0000		•			
1250	1.0000	1.0000				the state of the s	
2500	1.0000	0.8000					
5000	0.5000	0.7000					
10000	0.0000	0.0000					

				Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	Resp	Number
Control	1.0000	1.0000	0 .	20	20	2			0	20
625	1.0000	1.0000	0	20	20	2	1.0000	0.0500	Ö	20
1250	1.0000	1.0000	0	20	20	2 -	1.0000	0.0500	0	20
2500	0.9000	0.9000	2	18	20	2	0.2436	0.0500	2	20
*5000	0.6000	0.6000	8	12	20	2	0.0016	0.0500	8	20
10000	0.0000	0.0000	20	0	20	2			20	20

100					
Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
=: 1			· - · · · · · · · · · · · · · · · · · ·		
Fisher's Exact Test	2500	5000	3535.53		
, (0.10) 0 =/.cot : 001		000,0	5555.55		·
Tue atue anta con Contact					· ·

Treatments v	s Control											
				M	laximun	n Likeliho	od-Probit	t				
Parameter	Value	SE	95% Fidu	icial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	5.52367	1.09153	3.38427	7.66307		0 .	2.92774	7.81472	0.4	3.68941	0.18104	5
Intercept	-15.379	4.02979	-23.277	-7.4807								
TSCR-							1.0 -			· · · · · · · · · · · ·	/ 	•
Point	Probits	ppm	95% Fidu	cial Limits			0.9				. l	
EC01	2.674	1854.61	969.589	2524.93			4					
EC05	3.355	2463.94	1519.53	3143.62			0.8 -				1.	
EC10	3,718	2866.83	1921.67	3549.94			0.7			\parallel	- 1	
EC15	3.964	3175.25	2244.21	3865.91			% 0.6					
EC20	4.158	3443.87	2531.77	4148.37			_		•		•	
EC25	4.326	3692.36	2800.34	4418.61·			0.5 - 0.4 -			\parallel		
EC40	4.747	4400.96	3555.26	5260.46			804			 		
EC50	5.000	4891.17	4046.84	5925.17			0.3			///		
EC60	5.253	5435.99	4551.63	.6754.16			:					
EC75	5.674	6479.21	5408.85	8590.76			0.2					
EC80	5.842	6946.71	5758.32	9506.82			0.1					
EC85	6.036	7534.39	6176.28	10729.8			0.0			211	İ	
EC90	6.282	8344.95	6723.29	12535.8			U.U T	40	400 4	000 4000		
EC95	6.645	9709.47	7589.33	15859.5			'	10	100 10	000 10000	0 10000	
EC99	7.326	12899.5	9445.37	24864.4					.		0	
									Dose pr	om		

Dose ppm


		•		Acute Fish	Test-96 Hr Survival		-
Start Date:	12/18/2012	2	Test ID:	3110101Pp	Sample ID:	Delta	
End Date:	12/22/2012	<u>?</u>	Lab ID:	AAT, INC	Sample Type:	PREPARED	•
Sample Date:			Protocol	: EPAA 91-EPA/600/4	1-90/027F Test Species:	PP-Pimephales	promelas
Comments:							
Conc-ppm	1	2					
Control	1.0000	1.0000		***************************************			
625	1.0000	1.0000					
1250	1.0000	1.0000		•			
2500	1.0000	0.8000					
5000	0.2000	0.4000					
10000	0.0000	0.0000					

				Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean	Resp	Resp	Total	N	Exact P	Critical	 Resp	Number
Control	1.0000	1.0000	0	20	20	2			0	20
625	1.0000	1.0000	0	20	20	2	1.0000	0.0500	0	20
1250	1.0000	1.0000	0	20	20	2	1.0000	0.0500	0	20
2500	0.9000	0.9000	2	18	- 20	2	0.2436	0.0500	 2	20
*5000	0.3000	0.3000	14	6	20	2	0.0000	0.0500	14	20
10000	0.0000	0.0000	20	0	20	2			20	20

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	ΤÜ	
Fisher's Exact Test	2500	5000	3535.53		
Tractmenta va Central					

				Maxii	mum Likeliho	od-Probit					
Parameter	Value	SE	95% Fidu	cial Limits	Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	6.41177	1.33758	3.79012	9.03342	0	0.20124	7.81472	0.98	3.60744	0.15596	3
Intercept	-18.13	4.83008	-27.597	-8.6632							
TSCR						1.0 T			18/		

Point	Probits	ppm	95% Fidu	cial Limits
EC01	2.674	1756.38	950.395	2322.03
EC05	3.355	2243.4	1418.75	2799.72
EC10	3.718	2556.04	1748.95	3106.81
EC15	3.964	2791.24	2008.13	3342.78
EC20	4.158	2993.51	2235.62	3551.97
EC25	4.326	3178.69	2445.37	3750.77
EC40	4.747	3697.69	3022.69	4363.22
EC50	5.000	-4 049.89	3389.79	4840.81
EC60	.5.253	4435.64	3759.77	5430.23
EC75	5.674	5159.87	4372.13	6714.65
EC80	5.842	5479.05	4616.38	7345.35
EC85	, 6.036	5876.09	4904.84	8178.16
EC90	6.282	6416.79	5276.95	9390.84
EC95	6.645	7311.05	5855.32	11577.4
EC99	7.326	9338.29	7059.36	17284

Freshwater Acute Test

American Aquatic Testing, Inc. Time Start Date:

Dilution Water: FPA Mod. Hard

48Kr.SDR Test Type:___

	<u></u>	-	7 -		ir					
Concentration	Rep.				Ten	perature) (C)		ive Cour	nt
	<u> </u>	<u> 0 hr.</u>	24 hr.	48 hr.	0 hr.	24 hr.	48 hr.	0 hr.	24 hr.	48 hr.
0.1	Α	8.4	8.5	8.2	20.0	20.5	20.0	10	10	10
Contrel	В	8.4	18.5	8.1	20.0	20.5	20.0	10	10	10
625	Α.	8.4	8.5	8.1	20.0	20.5	20.0	GI	10	10
60-5	· B	8.4	8.5	8.1	20.0	20.5	20.0	0	10	10
120.	Α	8.4	8.5	8.2	20,0	2005	20.0	(0)	10	10
1250	В	8.4	8.5	8.2	20.0	20.5	20.0	61	10	10
	Α	8.4	8.5	8.2	20,0	20.5	20.0	10	9'	9
3500	B	8,4	. 3.5	8.3	20.0	2,06	20,0	10 .	10	82
C	Α	8.4	8.5	8,2	20.0	20.5	20.0	10	3	12
5000	В	8.4	8.5	8,2	20.0	20.5	20.0	10	3	03
10000	Α	8.4	8,90		30.0	20,50		(0	0	
- 300	В	8.4	9.00	_	20,0	20.50	-	10	λ	,
Initials		THE	TOD.	TAP	TAP	TAD	TAP	mo.	TRE	TH.
Date		12/18	12/K	12/20	13/18	12/19	12/20	12/18	12/19	12/20

Concentration	Alka	linity (m	g/L)	\ Hare	iness (m	Shlorine (mg/L)		
· · · · · · · · · · · · · · · · · · ·	o hr	24 hr.	48 hr.	o hi	24 hr.	48 hr.	Sample 1	
Control	·							
100%								
Initials								
Date								

Concentration	pН	(std uni	ls)	Condu	ctivity (u	mhos)
epm	0 hr.	24 hr.	48 hr.	0 hr.	24 hr.	48 hr.
Control	8.0	8-0	7.6	263	269	285
625	6.0	6.0	7.5	363	360	374
1250	6.4	6,0	7.4	227	529	550
2500	6.5	6.1	7.3	864	887	930
5000	6.0	6,0	7.2	1497	1488	1545
10000	6.0	6.70		2708	78H8	
Initials	780	TOP	TAP	TAP	7980	TAP
Date	12/18	12/19	12/20	19/18	12/19	12/20

Observations:	O Reading	done pria	r to exc	hance	due to	total	mucta	lity TOO	0/
@2811-78012/	15	V							-/'8

				Acute Fish Test-24	Hr Survival	
Start Date:	12/18/2012		Test ID:	3110101Cd	Sample ID:	Delta
End Date:	12/22/2012		Lab ID:	AAT, INC	Sample Type:	PREPARED
Sample Date:			Protocol:	EPAA 91-EPA/600/4-90/027	FTest Species:	CD-Ceriodaphnia dubia
Comments:						
Conc-ppm	1	2				
Control	1.0000	1.0000		***************************************		
625	1.0000	1.0000				
1250	1.0000	1.0000		•		•
2500	0.9000	1.0000		•		
5000	0.3000	0.3000				
10000	0.0000	0.0000				

					Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean		Resp	Resp	Total	····N ····	Exact P	Critical	Resp	Number
Control	1.0000	1.0000		0	20	20	2			0	20
625	1.0000	1.0000	•	0	20	20	2	1.0000	0.0500	0	20
1250	1.0000	1.0000		0	20	20	2 -	1.0000	0.0500	0	20
2500	0.9500	0.9500		1	19	20	2	0.5000	0.0500	1	20
*5000	0.3000	0.3000		14	6	20	2	0.0000	0.0500	14	20
10000	0.0000	0.0000		20	0	20	2			20	20

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU	
Fisher's Exact Test	2500	5000	3535.53		
Treatments vs Control ,			•		

1100111101110	• • • • • • • • • • • • • • • • • • • •						
				Maxi	mum Likeliho	od-Probit	-
Parameter	Value	SE	95% Fidu	icial Limits	Control	Chi-Sq	
Slope	7.43072	1.67529	4.14716	10.7143	0	0.07012	7

Slope	7.43072	1.67529	4.14716	10.7143
Intercept	-21.933	6.08404	-33.858	-10.008
TSCR				

10011				
Point	Probits	ppm	95% Fidu	icial Limits
EC01	2.674	2048.59	1110.73	2650.9
EC05	3.355	2530.27	1602.04	3106.42
EC10	3.718	2831.78	1939.86	3393.7
EC15	3.964	3055.25	2201.23	3612.12
EC20	4.158	3245.37	2428.3	3804.36
EC25	4.326	3417.87	2635.94	3986.1
EC40	4.747	3894.32	3199.37	4542.3
EC50	5.000	4212.37	3550.91	4974.33
EC60	5.253	4556.39	3898.59	5506.84
EC75	5.674	5191.54	4457.02	6662.26
EC80	5.842	5467.5	4674.02	7225.62
EC85	6.036	5807.72	4926.61	7964.79
EC90	6.282	6266.03	5247.37	9031.58
EC95	6.645	7012.69	5736.52	10928.7
EC99	7.326	8661.59	6726.65	15752.6

ii Likeiiiio	ou-Lionii				
Control	Chi-Sq	Critical	P-value	e Mu	Sigma
0	0.07012	7.81472	1	3.62453	0.13458
	1.0 T			- /P/	· ·
	0.9			/	
	0.8				
	4			$\parallel \parallel$	
	0.7			•	l
	မွ 0.6 -				
	2 0.5				
	9.0 0.5 0.4 0.4				
	0.3				
	4			·	
	0.2			. []	
	0.1				
	0.0 1			646 	11111111
	1	10	100	1000 10000	10000
				•	0
			Dose r	opm	

Reviewed by: ER

Iter

<u>.</u>				Acute Fish Test-48	Hr Survival		
Start Date:	12/18/2012	2	Test ID:	3110101Cd	Sample ID:	Delta	
End Date:	12/22/2012	2	Lab ID:	AAT, INC	Sample Type:	PREPARED	
Sample Date:		•	Protocol:	EPAA 91-EPA/600/4-90/027	Test Species:	CD-Ceriodaphnia dubia	
Comments:							
Conc-ppm	1	2					
Control	1.0000	1.0000					
625	1.0000	1.0000		•			
1250	1.0000	1.0000		•			
2500	0.9000	0.8000					
5000	0.1000	0.0000					
40000	0.0000	0.0000					

•					Not			Fisher's	1-Tailed	Number	Total
Conc-ppm	Mean	N-Mean	R	esp	Resp	Total	N	Exact P	Critical	Resp	Number
Control	1.0000	1.0000		0	20	20	2			0	20
625	1.0000	1.0000		0	20	20	2	1.0000	0.0500	0	20
1250	1.0000	1.0000		0	20	20	2	1.0000	0.0500	0	20
2500	0.8500	0.8500		3 :	17	20	2	0.1154	0.0500	3	20
*5000	0.0500	0.0500		19	1	20	2	0.0000	0.0500	19	20
10000	0.0000	0.0000	,	20	0	20	2			20	20

Hypothesis Test (1-tail, 0.05)	NOEC	LOEC	ChV	TU		
nypoulesis rest (1-tail, 0.05)	NOLO	LUEG			· · · · · · · · · · · · · · · · · · ·	1
Fisher's Exact Test	2500	5000	3535.53		_	4
~						•

Treat	tments	vs.Co.	ntrol

meannems v	S Control											
		Maximum Likelihood-Probit										
Parameter	Value	SE	95% Fidu	icial Limits		Control	Chi-Sq	Critical	P-value	Mu	Sigma	lter
Slope	8.92015	1.91995	5.15706	12.6832		0 .	0.00216	7.81472	1	3.51434	0.11211	3
Intercept	-26.348	6.72682	-39.533	-13.164								
TSCR							1.0 _T				- // 9	
Point	Probits	ppm	95% Fidu	icial Limits			0.9				/6 /	
EC01	2.674	1792.86	1139	2205.78			0.9]				$\parallel \parallel \parallel \parallel$	
EC05	3.355	2137.7	1522.57	2531.57			0.8					
EC10	3.718	2347.87	1769.51	2736.57			0.7				$\parallel \parallel \parallel$	
EC15	3.964	2501.23	1952.67	2892.58			4				$\parallel \parallel \parallel$	-
EC20	4.158	2630.23	2106.75	3029.97			Response - 9.0				$\parallel \parallel \parallel \parallel$	
EC25	4.326	2746.18	2243.88	3159.64			Ö 0.5				₩ l	
EC40	4.747	3061.56	2601.07	3551.02						i	III	
EC50	5.000	3268.46	2816.83	3844.54		. '	₩ 0.4]					
EC60 .	5.253	3489.36	3028.96	4191.93			0.3					
EC75	5.674	3890.07	3372.66	4904.59			0.2			- 1		
EC80	5.842	4061.57	3507.39	5238.13			0.2			k	 	
EC85	6.036	4271.04	3664.57	5665.96			0.1 -			- //	1	
EC90	6.282	4550.02	3864.03	6267.76			0.0 1					
EC95	6.645	4997.37	4166.62	7302.33			1	10	100	1000	10000	
EC99	7.326	5958.55	4769.89	9786.25			•		_			
Significant he	terogeneity	detected	(p < 0.01)				•		Dose p	Pili		

APPENDIX – B

CHAIN-OF-CUSTODY

DOCUMENTATION

Special Instructions: 1. Collected by AAT personnel
Client personnel Samples were: Sample # 610 434 9015 Sample # 890 North Graham St. ALLENTOWN, PA 18109 0 0 Temp. Relinquished by: O₂ Dilution water collection date(s) Upon Arrival @ Laboratory Initial Chemistry Job#: mg/L Alk. Received by: Hard, mg/L Transported on ice? Yes CI-mg/L SAFEDSCALE PLUS Sample Identification No No CUSTODY INFORMATION Date Client: Phone #: DANE BRANCY Address: Time ယ Wednes Solotions PREPAREN Received with in holding time? 4. Sample matrix is: Sample Type
C = Comp G=Grab DELTA PRODUCTS SAMPLE INFORMATION Will ammonia be analyzed on these samples? Will additional parameters be analyzed on these samples? Relinquished by: ď SOMO Sample Volume Client Contact: Received Sample Sample Disposal: 8 Sample Time 000 Lab: 4/189/12 Return to client Lab disposal Date Acute Liquid PSediment[]
Soil [] Other [] **Toxicity Testing** Chronic Sediment 000 Yes Yes Requested Time Lab Use #NLSI Other

...

AMERICAN AQUATIC JESTING, INC.

CHAIN OF CUSTODY